翻訳と辞書
Words near each other
・ Ługowiska
・ Ługowo
・ Ługowo, Strzelce-Drezdenko County
・ Ługowo, West Pomeranian Voivodeship
・ Ługowo, Zielona Góra County
・ Ługwałd
・ Ługów, Lublin Voivodeship
・ Ługów, Lubusz Voivodeship
・ Ługówka
・ Łuh (Bieszczady)
・ Łuk coat of arms
・ Łuka, Podlaskie Voivodeship
・ Łuka, Warmian-Masurian Voivodeship
・ Łukanowice
・ Łukasiewicz
Łukasiewicz logic
・ Łukasiewicz–Moisil algebra
・ Łukasz
・ Łukasz Abgarowicz
・ Łukasz Adamczyk
・ Łukasz Banak
・ Łukasz Bocian
・ Łukasz Bodnar
・ Łukasz Broź
・ Łukasz Budziłek
・ Łukasz Burliga
・ Łukasz Chyła
・ Łukasz Cichos
・ Łukasz Ciepliński
・ Łukasz Cyborowski


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Łukasiewicz logic : ウィキペディア英語版
Łukasiewicz logic
In mathematics, Łukasiewicz logic (; (:wukaˈɕɛvʲitʂ)) is a non-classical, many valued logic. It was originally defined in the early 20th-century by Jan Łukasiewicz as a three-valued logic;〔Łukasiewicz J., 1920, O logice trójwartościowej (in Polish). Ruch filozoficzny 5:170–171. English translation: On three-valued logic, in L. Borkowski (ed.), ''Selected works by Jan Łukasiewicz'', North–Holland, Amsterdam, 1970, pp. 87–88. ISBN 0-7204-2252-3〕 it was later generalized to ''n''-valued (for all finite ''n'') as well as infinitely-many-valued (ℵ0-valued) variants, both propositional and first-order.〔Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. ''Journal of Symbolic Logic'' 28:77–86.〕 The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz-Tarski logic.〔 citing Łukasiewicz, J., Tarski, A.: (Untersuchungen über den Aussagenkalkül ). Comp. Rend. Soc.
Sci. et Lettres Varsovie Cl. III 23, 30–50 (1930).〕 It belongs to the classes of t-norm fuzzy logics〔Hájek P., 1998, ''Metamathematics of Fuzzy Logic''. Dordrecht: Kluwer.〕 and substructural logics.〔Ono, H., 2003, "Substructural logics and residuated lattices — an introduction". In F.V. Hendricks, J. Malinowski (eds.): Trends in Logic: 50 Years of Studia Logica, ''Trends in Logic'' 20: 177–212.〕
This article presents the Łukasiewicz() logic in its full generality, i.e. as an infinite-valued logic. For an elementary introduction to the three-valued instantiation Ł3, see three-valued logic.
== Language ==
The propositional connectives of Łukasiewicz logic are
''implication'' \rightarrow,
''negation'' \neg,
''equivalence'' \leftrightarrow,
''weak conjunction'' \wedge,
''strong conjunction'' \otimes,
''weak disjunction'' \vee,
''strong disjunction'' \oplus,
and propositional constants \overline and \overline.
The presence of conjunction and disjunction is a common feature of substructural logics without the rule of contraction, to which Łukasiewicz logic belongs.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Łukasiewicz logic」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.